展開有意義的面對面對話,雖然能幫助改變態度,但若透過線上動態新聞閱讀觀點,不見得會有相同效果。(湯森路透)
一封電子郵件上寫著:「您的NIKE帳號訂單已取消。」來信時間是2001年1月,收信人是喬納‧裴瑞帝(Jonah Peretti),信件內容是裴瑞帝想購買幾雙客製化球鞋,但訂單因他要求的客製化字樣而遭取消——裴瑞帝要求在球鞋印上「sweatshop」(血汗工廠),這是他向耐吉(Nike)公司下的戰帖。
裴瑞帝當時在讀研究所,就讀麻省理工媒體實驗室(MIT Media Lab),他和耐吉就此在網路上開始魚雁往返,耐吉重申訂單無法成立的原因在於「使用不當俗稱」。由於裴瑞帝無法使耐吉改變做法,他決定將整串電子郵件轉寄給若干朋友,其中許多友人又再轉發,信件於是轉寄了好幾層,沒幾天便送到數千人手上。不久,這則消息也獲得媒體曝光機會。二月底時,《衛報》(The Guardian)和《華爾街日報》(Wall Street Journal)刊載整串信件內容,美國國家廣播公司(NBC)電視台邀請裴瑞帝參加《今日秀》(Today Show)節目,和一名耐吉發言人辯論這項議題。3月,整起事件躍上國際媒體,最後數間歐洲報社也展開報導。這一切,都起因於當初的一封信。裴瑞帝之後寫道:「雖然媒體將我與耐吉的對抗比喻成大衛對巨人歌利亞,真實情況卻是一方是耐吉這樣,擁有大眾媒體資源的公司,另一方是一群網路使用者社群,手上能用的只有微媒體(micromedia)。」
這封電子郵件廣為流傳,但會不會全是誤打誤撞?卡梅隆‧馬洛(Cameron Marlow)是裴瑞帝的友人,也是博士班同學,之後成為Facebook數據科學主管。馬洛儼然相信這只是僥倖,他不認為憑一己之力,能刻意使事物擴散至此,而裴瑞帝倒是以為他能複製當初模式。耐吉電子郵件事件不久後,「Eyebeam」這家紐約的多媒體非營利機構延攬了裴瑞帝,聘他擔任「傳染力媒體實驗室」(contagious media lab)主管,針對線上內容展開網路實驗。他想觀察的是:什麼造就傳染力?又是什麼維持擴散的熱度?
在接下來數年,裴瑞帝著手研究網路人氣的特徵,像是搭上新聞潮流如何驅動網站流量,標題兩極化如何增加露出,內容求新求變則能增加使用者的固著度。裴瑞帝團隊甚至新創了一種「轉發」(reblog)功能,網友能藉此分享其他人的張貼內容。這項概念日後成為社群網路上內容傳播的基本功能。想像一下:如果Twitter拿掉「轉推」的選項,Facebook移除「分享」按鍵,結果會有何不同?裴瑞帝最終轉戰新聞界,幫助《赫芬頓郵報》(Huffington Post)發展業務,但早期的傳染力試驗卻在腦海中揮之不去。最終,他向前東家Eyebeam年事已高的老闆提出建議,建立新型態的媒體公司,專攻有傳染力的擴散現象,運用他們對網路人氣的見解,大規模展開應用。他們的想法是不斷滾動生成能病毒式瘋傳的內容,並稱之為「BuzzFeed」。
*****
鄧肯・華茲發表小世界網絡的研究後不久,進入哥倫比亞大學社會學系。在這段期間,他對線上內容愈感興味盎然,最後也擔任BuzzFeed的早期顧問。儘管華茲最初的研究方向是電影演員和蟲腦等網絡中的連接,但全球資訊網(world wide web)蘊含大量新型數據。2000年代初期時,華茲團隊開始探討全球資訊網的線上連結。過程中,他們推翻了外界長期以來對資訊傳播方式的認知。
當時,行銷界愈來愈關注「高影響力人士」這個概念,即能引發社會傳染現象的一般人。在這個年頭,原文「influencer」已演變為泛稱,指的是有影響力的一般民眾、名流和媒體名人,但原概念形容的是名不見經傳的人,能引起一傳十、十傳百的擴散現象。影響力行銷的理念,是由企業鎖定一些意料之外擁有緊密連結的民眾,藉此以較少的成本,加大想法傳播的範圍。企業不依靠歐普拉‧溫芙蕾(Oprah Winfrey)這類名人來宣傳產品,反而能從零建立民眾的熱情。華茲目前主要任職於美國賓州大學,他表示:「行銷界的人會受到這個概念吸引,主要原因在於他們能以小預算,達到歐普拉代言等級的大效果。」
影響力行銷的概念啟迪自心理學家史坦利‧米爾格蘭(Stanley Milgram)著名的「小世界」(small-world)試驗。1967年,米爾格蘭對300個人指派了一項任務:將一條訊息傳給居住在美國波士頓附近夏倫鎮(Sharon)的某個證券經紀人。最後,有64人找到目標,其中有1/4的訊息途經同一位中介者轉給該證券經紀人,這名中介者於當地從事服飾生意,顯然是證券經紀人和外界間的最大接點;米爾格蘭表示,證券經紀人得知這事後相當驚訝。如果一位沒有裙帶關係的商人在傳達訊息一事上,竟如此舉足輕重,那麼會不會還有其他人具有類似影響力?
華茲指出影響力的假說事實上有多種版本:「有個版本很有趣,不過是假的;另一個版本是真的,但是不有趣。」在有趣的版本中,存在特定人士(如米爾格蘭實驗中的服飾商),他們在社會傳染現象上具有不成比例的重要性。如果你能找到這種人,則不需大筆行銷預算和名人代言,便能達到宣傳效果。此假說雖然吸引人,但未受到嚴格審視。2003年,華茲的哥大團隊重新執行米爾格蘭的實驗,訊息改以電子郵件傳遞,規模也更加擴大。團隊挑了18位不同的目標對象,所在地橫跨13國,接著建立2萬5千條電郵寄送鏈,請每一位參加者都將訊息寄給一名特定目標。在米爾格蘭的小規模實驗中,服飾商儼然是連結訊息的要角,但在華茲設計的電郵鏈中,未觀察到相同情形,而是訊息透過一群不同的人,在每一條電郵鏈中流傳,並非有同樣一群「高影響力人士」不斷現身。此外,針對如何選擇收信人,哥大研究團隊也就此詢問實驗參加者。結果顯示,他們偏好考量位置或職業等特徵,而非以特殊名氣或人脈廣闊作為依據。
華茲團隊的實驗顯示,要傳遞訊息至特定目標,不一定需要有大量人脈的民眾。不過,如果我們只關注讓事物傳播得愈遠愈好呢?人際網絡中擁有更多人脈者(如名人),是否有助於確保引發擴散現象?電郵鏈實驗數年後,華茲團隊檢視Twitter上的網路連結傳播方式。結果顯示,如果內容的張貼人擁有許多追蹤者,或是先前的貼文曾形成轉推熱潮,可能更有助於協助事物傳播。然而,也無法因此保證能爆紅。多數情況下,符合條件者並無法成功引爆大型的擴散現象。
我們順著這項結果,來看更陽春版的影響力假說:也就是「有些人就是比其他人更有影響力」。有大量證據支撐這項說法。例如,2012年,斯南.艾瑞爾(Sinan Aral)和迪倫.沃克(Dylan Walker)研究人們如何受朋友影響在Facebook上選擇應用程式(app)。艾、沃二人發現,在各好友配對中,女性對男性的影響比例,要比女性之間互相影響的比例高出45%,且年逾30歲的女性影響力高於未滿18歲的女性,高出的幅度逾50%。研究並顯示,女性比男性更不容易受到影響,且已婚人士比單身者更不易受到左右。
理想上,要傳播一項想法,需要一群人既具有強大影響力,又容易受到影響,但艾、沃二人發現這樣的人十分罕見。他們說明:「有強大影響力的個人不容易受到影響;此外,幾乎沒有人既有強大影響力,又容易受到他人影響。」那麼,如果研究對象鎖定有影響力的人,結果又會如何?沃克團隊執行追蹤研究,選定最可能具影響力的人,模擬出由這些人引發社會傳染現象的結果。相較於隨機選擇,艾、沃二人發現,有效選擇目標可能協助傳播,程度多達兩倍。傳播效果是進步了,但如果要讓一些低知名度的影響力人士單憑一己之力,大幅引發有傳染力的擴散現象,還有很長的路要走。
要在人際間傳播想法,為何如此困難?原因之一在於很少有人既有影響力,又容易受到影響。如果有人將一項想法傳給許多容易受到影響的人,後者不見得會持續將想法傳遞給位處更遠的他人。互動結構也是一個原因。金融網絡屬於「異配」結構,即大型銀行連結至許多小型銀行,而人脈網絡則有相反傾向。村落社區也好,Facebook好友也罷,證據顯示受歡迎的人所形成的人脈關係,往往也會是其他受歡迎的人。這表示如果鎖定若干高人氣對象,或許可形成口碑式擴散現象,使想法快速流傳,但可能無法影響到人脈網絡中的多數群眾。因此,相較於在一個社群中找出高知名度的影響力人士,若能橫跨單一人脈網絡,引發多起有傳染力的擴散現象,則傳播效果會更好。
華茲注意到,人們傾向於將不同的影響力理論混為一談。他們可能聲稱發現了隱藏的高影響力人士(例如米爾格蘭實驗中的服飾商),並利用這些高影響力者來傳播事物。然而,事實是他們可能只是展開大眾媒體行銷活動,或是請名人於網路業配,而這無法勾起實質的口碑式傳播效應。華茲說:「人們會有意無意擴大解釋,讓無聊的東西聽起來很有趣。」
針對高影響力人士的相關論辯顯示,我們必須思考自己是如何接觸網路資訊的。對於一些想法,為什麼我們會捨此從彼?原因之一就是競爭:各類論點、新聞、產品全面競相爭取關注。生物的傳染現象也有異曲同工之妙:流感和瘧疾等疾病的病原體,事實上都由多株組成。這些病原株不斷競爭,搶著侵入有受感染風險的人體。為什麼不是其中一種病原株勝出,宰制其他病原株?人類的社會行為或許能說明一二。如果人們聚集,形成緊密連結的小圈圈,則會使各式各樣的病原株停留在一個人類群體之中。實際上,每個病原株都能找到自己的地盤,不需彼此頻繁競爭。這樣的社會互動型態,也能說明網路使用者何以在想法與見解上會有巨大落差。從政治立場到陰謀論,有相似世界觀的社群媒體群體時常聚集在一起,並可能因此形成「同溫層」。身處同溫層時,很少會聽到與自己相左的觀點。
反疫苗團體是聲量浩大的網路社群。麻疹、腮腺炎、德國麻疹(MMR)三合一疫苗會導致自閉症一說廣為流傳,卻又沒有根據。反疫苗團體時常擁護這項說法。謠言開始於1998年的一篇科學論文,研究由安德魯‧維克菲爾德(Andrew Wakefield)主導。論文遭到質疑和撤回,維克菲爾德也從英國醫事人員名冊中除名。不幸的是,英國媒體挑出維克菲爾德的主張,並大書特書。此舉導致三合一疫苗接種率下降,而後未接種者回到各級學校,在校內與人密切接觸。數年後,英國便爆發數波大型麻疹疫情。
2000年代初期,MMR三合一疫苗的謠言固然在英國甚囂塵上,歐陸國家的媒體報導倒是另一番光景。這一廂,英國對於MMR三合一疫苗有愈來愈多負面報導;那一頭,法國媒體則是針對B型肝炎和多發性硬化,揣測兩者之間未經驗證的連結。時間拉到近期,日本媒體對人類乳突病毒(HPV)疫苗展開負面報導,而在肯亞,一則流傳二十年的謠言再次浮出檯面。
民眾對醫學持疑也非新鮮事。數百年來,人一直在質疑疾病的預防方法。1796年,愛德華‧詹納醫師(Edward Jenner)發明天花疫苗;在此之前,有的人會使用稱為「人痘接種」(variolation)的技術,減少罹病風險。這項技術起始於16世紀中國,透過讓健康的人接觸天花病患的結痂或膿液,刺激人體形成溫和的感染反應,藉此針對病毒產生免疫能力。儘管人痘接種術的操作仍有風險(致死率約2%),但相較於天花動輒三成的死亡率,仍是小巫見大巫。
英國於18世紀開始流行人痘接種術,但風險效益比是否值得?據法國作家伏爾泰(Voltaire)觀察,其他歐洲人認為英國人又笨又瘋,才會採用人痘接種。「之所以說他們笨,因為他們為了避免孩子染上天花,索性先讓小孩得到天花;之所以說他們瘋,是因為他們想將某種可怕的瘟病傳給他們的小孩,目的只是預防一種未知的禍害。」伏爾泰指出英國的批評也是一面倒。「海峽另一邊的英國人說英國人以外的歐洲人膽小,又違逆自然。說膽小,是因為他們害怕讓小孩忍受一點點痛苦;說違逆自然,是因為他們讓自己一次又一次死於天花。」(伏爾泰本身則是罹患天花後痊癒,支持英國人的防疫法。)
1759年,數學家丹尼爾‧白努利(Daniel Bernoulli)決定試著讓爭議畫下句點。為了釐清天花染疫風險是否大於人痘接種風險,白努利設計了第一個疫情分析模型。他根據天花傳播的模式,推估出只要人痘接種的致死風險低於10%(符合真實數據),便能延長預期壽命。
在現代社會,疫苗接種與否,通常不是難題。一方面,MMR三合一接種等疫苗非常安全有效,而麻疹等傳染病又有可能致死。因此,有疫苗還普遍拒絕接種,往往是奢侈行為;有的地區因為打了疫苗,數十年來感染率低,反而會有這種現象。一項2019年的調查發現,相較於非洲與亞洲民眾,歐洲國家更加不相信疫苗。
一直以來,疫苗相關謠言都只是特定國家才有,但現代人的數位連結程度與日俱增,情況有了變化。今日網路資訊傳遞快速,自動翻譯功能跨越了語言藩籬,使得疫苗接種的迷思從而傳開。人們對於疫苗接種的信心因而下降,而這可能對兒童健康帶來可怕的後果。由於麻疹傳染力極強,需至少有95%人口接種疫苗,才有望預防疫情傳播。在反對接種觀念深植人心的地方,疫情隨之而來。近幾年來,歐洲已有數十人死於麻疹。如果接種率更高,原本能防患於未然。
由於出現反疫苗社群運動,人們開始注意線上同溫層的可能性。然而,在存取資訊時,有多大程度受到社群媒體演算法的實質影響?畢竟,現實生活中,我們與他人分享信念,而在網路上也不例外。線上的資訊傳播,會不會只是反映早就存在的同溫層?
在社群媒體上,有三大因素會影響我們的閱讀內容:聯絡人是否有分享文章?該文章是否出現在動態消息(feed)上?我們有沒有點閱?根據Facebook數據,這三大因素都會影響我們吸收資訊。Facebook數據科學團隊曾針對2014至2015年間的美國使用者,探討他們的政治觀點,研究發現使用者傾向於接觸相近的觀點,程度會遠高過隨機挑選朋友時的情況。Facebook演算法會決定使用者動態新聞(News Feeds)的內容,在好友張貼的內容中,演算法又會過濾掉5%至8%相左的政治觀點。同時,使用者看到呈現內容時,又較不會點選與本身政治立場相左的貼文。使用者極為偏好點選顯示於動態新聞頂端的文章,這證明為了搶占關注,內容競爭會有多激烈,也表示如果Facebook存在著同溫層,則同溫層會先從好友圈開始形成,但隨後可能因動態新聞演算法受到誇大。
來自其他管道的資訊又如何呢?會同樣兩極化呈現嗎?2016年,牛津大學、史丹佛大學和微軟公司研發單位Microsoft Research以5萬名美國人為對象,檢視他們的網路瀏覽習慣。研究結果發現,相較於在自己偏好的新聞網站上看到的文章,使用者在社群媒體和搜索引擎上看到的文章大體上更兩極化。不過,社群媒體和搜索引擎也會讓使用者接觸範圍更廣的觀點。新聞可能有更強的意識形態內容,但民眾也必須多加接觸對立的想法。
這似乎是矛盾的:相較於傳統新聞來源,如果社群媒體豐富了我們接觸的資訊範圍,又為何無法減少同溫層形成呢?原因可能在於我們對線上資訊的反應。杜克大學(Duke University)多位社會學家以美國志願受試者為對象,請他們追蹤持相反觀點的Twitter帳戶,結果發現受試者隨後會撤回到符合本身政治立場的領域。平均而言,共和黨支持者變得更加保守派,而民主黨支持者變得更加自由派。這與第三章探討的「逆火效應」並不完全相同,因為民眾並非讓特定信念受到挑戰,但這確實代表要減少政治立場極化,不如建立新的網路人際連結那樣簡單。和現實生活一樣,我們在網路上也可能討厭接觸到我們不同意的觀點。展開有意義的面對面對話,雖然能幫助改變態度(就像改變偏見和暴力的實驗),但若透過線上動態新聞閱讀觀點,不見得會有相同效果。